Tracking-ADMM for distributed constraint-coupled optimization
نویسندگان
چکیده
منابع مشابه
Adaptive Consensus ADMM for Distributed Optimization
The alternating direction method of multipliers (ADMM) is commonly used for distributed model fitting problems, but its performance and reliability depend strongly on userdefined penalty parameters. We study distributed ADMM methods that boost performance by using different fine-tuned algorithm parameters on each worker node. We present a O(1/k) convergence rate for adaptive ADMM methods with n...
متن کاملAsynchronous Distributed ADMM for Consensus Optimization
Distributed optimization algorithms are highly attractive for solving big data problems. In particular, many machine learning problems can be formulated as the global consensus optimization problem, which can then be solved in a distributed manner by the alternating direction method of multipliers (ADMM) algorithm. However, this suffers from the straggler problem as its updates have to be synch...
متن کاملConstraint Coupled Distributed Optimization: Relaxation and Duality Approach
In this paper we consider a distributed optimization scenario in which agents of a network want to minimize the sum of local convex cost functions, each one depending on a local variable, subject to convex local and coupling constraints, with the latter involving all the decision variables. We propose a novel distributed algorithm based on a relaxation of the primal problem and an elegant explo...
متن کاملFast ADMM Algorithm for Distributed Optimization with Adaptive Penalty
We propose new methods to speed up convergence of the Alternating Direction Method of Multipliers (ADMM), a common optimization tool in the context of large scale and distributed learning. The proposed method accelerates the speed of convergence by automatically deciding the constraint penalty needed for parameter consensus in each iteration. In addition, we also propose an extension of the met...
متن کاملAsynchronous ADMM for Distributed Non-Convex Optimization in Power Systems
Large scale, non-convex optimization problems arising in many complex networks such as the power system call for efficient and scalable distributed optimization algorithms. Existing distributed methods are usually iterative and require synchronization of all workers at each iteration, which is hard to scale and could result in the under-utilization of computation resources due to the heterogene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2020
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2020.108962